Fixed point Theorems for Expansive mappings in G-metric Spaces

*A.S.Saluja, **Alkesh Kumar Dhakde and ***Devkrisna Magarde

Abstract: In this Paper, we define the expansive mappings in the setting of G-metric space; also several fixed point theorems for a class of expansive mappings defined on a complete G-metric space are studied.

Mathematics Subject Classification: Primary 47H10, Secondary 46H20

Keywords: Metric space, generalized metric space, Gmetric space, 2-metric space, expansive mapping.

Introduction: In 2005, a new structure of generalized metric spaces was introduced by Zead Mustafa and Brailey Sims as appropriate notion of generalized metric space called G-metric spaces see [3] as follows.

Definition 1. [(3)] Let X be a nonempty set, and let $G: X \times X \times X \rightarrow R^{+}$, be a function satisfying the following properties:
(G1) $G(x, y, z)=0$ if $x=y=z$,
(G2) $0<G(x, x, y)$; for all $x, y \in X$, with $x \neq y$,
(G3) $G(x, x, y) \leq G(x, y, z)$, for all $x, y, z \in X$, with $z \neq y$

$$
\begin{equation*}
G(x, y, z)=G(x, z, y)=G(y, z, x)=\ldots \ldots . \tag{G4}
\end{equation*}
$$ (Symmetry in all three variables), and

(G5) $G(x, y, z) \leq G(x, a, a)+G(a, y, z)$, for all $x, y, z, a \in X$, (rectangle inequality).

Then the function G is called generalized metric, or, more specially G-metric on X, and the pair (X, G) is called a G-metric space. (Throughout this paper we denote R^{+}the set of all positive real numbers and N the set of all natural numbers).

Main Author: A.S.Saluja

J.H.Govt.P.G.College Betul (M.P)

Definition 2. Let (X, G) be a G-metric space, let $\left\{x_{n}\right\}$ be a sequence of points of X, a point $x \in X$ is said to be the limit of the sequence $\left\{x_{n}\right\}$ if $\lim _{n, m \rightarrow \infty} G\left(x, x_{n}, x_{m}\right)=0$, and one say that the sequence $\left\{x_{n}\right\}$ is G-convergent to x.

Thus, that if $x_{n} \rightarrow 0$ in a G-metric space (X, G), then for any $\varepsilon>0$, there exists $n \in N$ such that $G\left(x, x_{n}, x_{m}\right)<\varepsilon$, for all $n, m \geq N$. Proposition 1. ([3]) Let (X, G) be a G-metric space. Then the following are equivalent.

$$
\begin{aligned}
& \left(x_{n}\right) \text { is } G \text {-convergent to } x . \\
& G\left(x_{n}, x_{n}, x\right) \rightarrow 0 \text {, as } n \rightarrow \infty \\
& G\left(x_{n}, x, x\right) \rightarrow 0 \text {, as } n \rightarrow \infty . \\
& G\left(x_{m}, x_{n}, x\right) \rightarrow 0 \text {, as } m, n \rightarrow \infty .
\end{aligned}
$$

Definition 3. ([3]) Let (X, G) be a G-metric space. A sequence $\left(x_{n}\right)$ is called G-Cauchy if given $\varepsilon>0$, there is $N \in \mathrm{~N}$ such that $G\left(x_{n}, x_{m}, x_{l}\right)<\varepsilon$, for all $n, m, l \geq N$, that is, if $G\left(x_{n}, x_{m}, x_{l}\right) \rightarrow 0$ as $n, m, l \rightarrow \infty$.

Proposition 2. ([3]) If (X, G) be a G-metric space, then the following are equivalent.

1. The sequence $\left(x_{n}\right)$ is G-Cauchy.
2. For every $\varepsilon>0$, there exists $N \in \mathrm{~N}$ such that $G\left(x_{n}, x_{m}, x_{m}\right)<\varepsilon$, for all $n, m \geq N$.

Definition 4. ([3]) Let (X, G) and $\left(X^{\prime}, G^{\prime}\right)$ be two G-metric spaces, and let $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ be a function. Then f is said to be G-continuous at a point $a \in X$ if and only if given $\varepsilon>0$, there exists $\delta>0$ such that $x, y \in X$; and $G(a, x, y)<\delta$ implies $G^{\prime}(f(a), f(x), f(y))<\varepsilon$.A function f is G -continuous on X if and only if it is G-continuous at all $a \in X$.

Proposition 3. ([3]) Let (X, G) and $\left(X^{\prime}, G^{\prime}\right)$ be two G-metric spaces. Then a function $f: X \rightarrow X^{\prime}$ is G-continuous at $X \in X$ if and only if it is G-sequentially continuous at X; that is, whenever $\left(x_{n}\right)$ is G-convergent to x we have $\left(f\left(x_{n}\right)\right)$ is G-convergent to $f(x)$.

Proposition 4. ([3]) Let (X, G) be a G-metric space. Then the function $G(x, y, z)$ is jointly continuous in all three of its variables.

Definition 5. ([3]) A G-metric space (X, G) is said to be G-complete (or complete G-metric) if every G-Cauchy sequence in (X, G) is Gconvergent in (X, G).

Definition 6. ([3]) A G-metric space (X, G) is called symmetric G-metric space if $G(x, y, y)=G(y, x, x)$ for all $x, y \in X$.

The following fixed point theorem for a contractive mapping on G-metric space has proved in [2].

Theorem 1.1. [2] Let (X, G) be a complete Gmetric space and $T: X \rightarrow X$ be a mapping satisfies the following condition for all $x, y, z \in X$

$$
\begin{equation*}
G(T x, T y, T z) \leq k G(x, y, z) \tag{1.1}
\end{equation*}
$$

Where $k \in[0,1]$. Then T has a unique fixed point.
Theorem 1.2. ([2]) Let (X, G) be a complete Gmetric space and $T: X \rightarrow X$ be a mapping satisfies the following condition for all $x, y \in X$

$$
\begin{equation*}
G(T x, T y, T y) \leq k G(x, y, y) \tag{1.2}
\end{equation*}
$$

Where $k \in[0,1]$. Then T has a unique fixed point.In [2] we showed that a mapping satisfies the condition (1.1) will satisfy condition (1.2) when $k \in\left[\frac{1}{2}, 1\right)$, we showed in a counter example that condition (1.2) need not imply condition (1.1) (for detail see [2]).

Definition 7. Let (X, G) be a G-metric space and T be self mapping on X. Then T is called expansive mapping if there exists a constant $a>1$ such that for all $x, y, z \in X$, we have

$$
G(T x, T y, T z) \geq a G(x, y, z)
$$

Main Results 2: we start our work by proving the following theorem:

Theorem 2.1: Let (X, G) be a complete Gmetric space and let $T: X \rightarrow X$ be an onto mappings satisfies the following condition for all $x, y, z \in X$
$G(T x, T y, T z) \geq a_{1} G(x, y, z)+a_{2} G(x, T x, T x)+a_{3} G(y, T y, T y)$
$+a_{4} G(x, T z, T z)+a_{5}\left[\frac{G(x, T y, T y)+G(y, T x, T x)}{2}\right]$
$+a_{6}\left[\frac{G(y, T z, T z)+G(z, T y, T y)}{2}\right]+a_{7}\left[\frac{G(x, T z, T z)+G(z, T x, T x)}{2}\right]$
where $a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}>1$ and $2 a_{3}+2 a_{4}+a_{5}+2 a_{6}+a_{7}>2$. Then T has a unique fixed point.

Proof: Let $X_{0} \in X$, since T is onto there exist $x_{1} \in T^{-1}\left(x_{0}\right)$. Continuing in this way, we get a sequence $\left\{x_{n}\right\}$, where $x_{n} \in T^{-1}\left(x_{n-1}\right)$.If $x_{n}=x_{n-1}$ for some n, we get x_{n} as a fixed point of T. Assuming $x_{n} \neq x_{n-1}$, for every n, then from (2.1)

$$
\begin{aligned}
& G\left(x_{n-1}, x_{n-1}, x_{n}\right)=G\left(T x_{n}, T x_{n}, T x_{n+1}\right) \\
& \geq a_{1} G\left(x_{n}, x_{n}, x_{n+1}\right)+a_{2} G\left(x_{n}, T x_{n}, T x_{n}\right) \\
& +a_{3} G\left(x_{n}, T x_{n}, T x_{n}\right)+a_{4} G\left(x_{n+1}, T x_{n+1}, T x_{n+1}\right) \\
& +a_{5}\left[\frac{G\left(x_{n}, T x_{n}, T x_{n}\right)+G\left(x_{n}, T x_{n}, T x_{n}\right)}{2}\right] \\
& +a_{6}\left[\frac{G\left(x_{n}, T x_{n+1}, T x_{n+1}\right)+G\left(x_{n+1}, T x_{n}, T x_{n}\right)}{2}\right] \\
& +a_{7}\left[\frac{G\left(x_{n}, T x_{n+1}, T x_{n+1}\right)+G\left(x_{n+1}, T x_{n}, T x_{n}\right)}{2}\right] \\
& \geq a_{1} G\left(x_{n}, x_{n}, x_{n+1}\right)+a_{2} G\left(x_{n}, x_{n-1}, x_{n-1}\right) \\
& +a_{3} G\left(x_{n}, x_{n-1}, x_{n-1}\right)+a_{4} G\left(x_{n+1}, x_{n}, x_{n}\right) \\
& +a_{5}\left[\frac{G\left(x_{n}, x_{n-1}, x_{n-1}\right)+G\left(x_{n}, x_{n-1}, x_{n-1}\right)}{2}\right] \\
& +a_{6}\left[\frac{G\left(x_{n}, x_{n}, x_{n}\right)+G\left(x_{n+1}, x_{n-1}, x_{n-1}\right)}{2}\right] \\
& +a_{7}\left[\frac{G\left(x_{n}, x_{n}, x_{n}\right)+G\left(x_{n+1}, x_{n-1}, x_{n-1}\right)}{2}\right]
\end{aligned}
$$

$$
\geq a_{1} G\left(x_{n}, x_{n}, x_{n+1}\right)+a_{2} G\left(x_{n}, x_{n-1}, x_{n-1}\right)
$$

$$
+a_{3} G\left(x_{n}, x_{n-1}, x_{n-1}\right)+a_{4} G\left(x_{n+1}, x_{n}, x_{n}\right)
$$

$$
+a_{5} G\left(x_{n}, x_{n-1}, x_{n-1}\right)+a_{6}\left[\frac{G\left(x_{n+1}, x_{n}, x_{n}\right)+G\left(x_{n}, x_{n-1}, x_{n-1}\right)}{2}\right]
$$

$$
+a_{7}\left[\frac{G\left(x_{n+1}, x_{n}, x_{n}\right)+G\left(x_{n}, x_{n-1}, x_{n-1}\right)}{2}\right]
$$

$$
\geq\left(a_{1}+a_{4}+\frac{a_{6}}{2}+\frac{a_{7}}{2}\right) G\left(x_{n}, x_{n}, x_{n+1}\right)
$$

$$
+\left(a_{2}+a_{3}+a_{5}+\frac{a_{6}}{2}+\frac{a_{7}}{2}\right) G\left(x_{n}, x_{n-1}, x_{n-1}\right)
$$

$$
\Rightarrow 2 G\left(x_{n-1}, x_{n-1}, x_{n}\right) \geq\left(2 a_{1}+2 a_{4}+a_{6}+a_{7}\right) G\left(x_{n}, x_{n}, x_{n+1}\right)
$$

$$
+\left(2 a_{2}+2 a_{3}+2 a_{5}+a_{6}+a_{7}\right) G\left(x_{n}, x_{n-1}, x_{n-1}\right)
$$

$$
\Rightarrow\left(2-2 a_{2}-2 a_{3}-2 a_{5}-a_{6}-a_{7}\right) G\left(x_{n}, x_{n-1}, x_{n-1}\right)
$$

$$
\geq\left(2 a_{1}+2 a_{4}+a_{6}+a_{7}\right) G\left(x_{n}, x_{n}, x_{n+1}\right)
$$

$$
\Rightarrow \leq\left(\frac{2-2 a_{2}-2 a_{3}-2 a_{5}-a_{6}-a_{7}}{2 a_{1}+2 a_{4}+a_{6}+a_{7}}\right) G\left(x_{n}, x_{n-1}, x_{n-1}\right)
$$

$$
\Rightarrow G\left(x_{n}, x_{n}, x_{n+1}\right) \leq k G\left(x_{n}, x_{n-1}, x_{n-1}\right)
$$

Where $k=\left(\frac{2-2 a_{2}-2 a_{3}-2 a_{5}-a_{6}-a_{7}}{2 a_{1}+2 a_{4}+a_{6}+a_{7}}\right)$
Proceeding in this way, we get

$$
G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq k^{n} G\left(x_{0}, x_{1}, x_{1}\right)
$$

Then for all $n, m \in N, m>n$, we have

$$
\begin{aligned}
G\left(x_{m}, x_{n}, x_{n}\right) & \leq G\left(x_{n}, x_{n+1}, x_{n+1}\right)+G\left(x_{n+1}, x_{n+2}, x_{n+2}\right) \\
& +\ldots \ldots \ldots \ldots+G\left(x_{m-1}, x_{m}, x_{m}\right) \\
& \leq\left[k^{n}+k^{n+1}+k^{n+2}+\ldots \ldots . .+k^{m-1}\right] G\left(x_{0}, x_{1}, x_{1}\right) \\
& \leq \frac{k^{n}}{1-k} G\left(x_{0}, x_{1}, x_{1}\right)
\end{aligned}
$$

So, $\lim _{n \rightarrow \infty} G\left(x_{m}, x_{n}, x_{n}\right) \rightarrow 0$ as $n, m \rightarrow \infty$ and $\left\langle x_{n}\right\rangle$ is G-Cauchy sequence. By the completeness of (X, G) there exists $u \in X$ such that $\left\langle x_{n}\right\rangle$ is G -converges to u.

Let $y \in T^{-1}(u)$. For infinitely many $n, x_{n} \neq u$.
For such n, we have

$$
\begin{aligned}
& G\left(x_{n}, u, u\right)=G\left(T x_{n+1}, T y, T y\right) \\
& \geq a_{1} G\left(x_{n+1}, y, y\right)+a_{2} G\left(x_{n+1}, x_{n}, x_{n}\right)+a_{3} G(y, T y, T y) \\
& +a_{4} G\left(x_{n+1}, T y, T y\right)+a_{5}\left[\frac{G\left(x_{n+1}, T y, T y\right)+G\left(y, x_{n}, x_{n}\right)}{2}\right] \\
& +a_{6}\left[\frac{G\left(x_{n+1}, T y, T y\right)+G(y, T y, T y)}{2}\right] \\
& +a_{7}\left[\frac{G\left(x_{n+1}, T y, T y\right)+G\left(x_{n+1}, x_{n}, x_{n}\right)}{2}\right] \\
& \geq a_{1} G\left(x_{n+1}, y, y\right)+a_{2} G\left(x_{n+1}, x_{n}, x_{n}\right)+a_{3} G(y, T y, T y) \\
& +a_{4} G\left(x_{n+1}, T y, T y\right)+a_{5}\left[\frac{G\left(x_{n+1}, T y, T y\right)+G\left(y, x_{n}, x_{n}\right)}{2}\right] \\
& +a_{6}\left[\frac{G\left(x_{n+1}, T y, T y\right)+G(y, T y, T y)}{2}\right] \\
& +a_{7}\left[\frac{G\left(x_{n+1}, T y, T y\right)+G\left(x_{n+1}, x_{n}, x_{n}\right)}{2}\right]
\end{aligned}
$$

Taking limit $n \rightarrow \infty$ we get
$G(y, u, u) \geq\left(a_{3}+a_{4}+\frac{a_{5}}{2}+a_{6}+\frac{a_{7}}{2}\right) G(u, u, y)$
$\Rightarrow 2 G(y, u, u) \geq\left(2 a_{3}+2 a_{4}+a_{5}+2 a_{6}+a_{7}\right) G(u, u, y)$
Which is contradiction since $a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}>1$.So $u=y$, but $T y=u=y$. Therefore, u is a fixed point of T .Suppose there is another fixed point V such that $T v=v$, then

$$
\begin{aligned}
& G(u, u, v)=G(T u, T u, T v) \\
& \geq a_{1} G(u, u, v)+a_{2} G(u, T u, T u)+a_{3} G(u, T u, T u) \\
& +a_{4} G(v, T v, T v)+a_{5}\left[\frac{G(u, T u, T u)+G(u, T u, T u)}{2}\right] \\
& +a_{6}\left[\frac{G(u, T v, T v)+G(v, T u, T u)}{2}\right] \\
& +a_{7}\left[\frac{G(u, T v, T v)+G(v, T u, T u)}{2}\right] \\
& \Rightarrow G(u, u, v) \geq\left(a_{1}+\frac{a_{6}}{2}+\frac{a_{7}}{2}\right) G(u, u, v)+\left(\frac{a_{6}}{2}+\frac{a_{7}}{2}\right) G(u, v, v) \\
& \Rightarrow 2 G(u, v, v) \geq\left(2 a_{1}+a_{6}+a_{7}\right) G(u, u, v)+\left(a_{6}+a_{7}\right) G(u, v, v) \\
& \Rightarrow\left(2-2 a_{1}-a_{6}-a_{7}\right) G(u, u, v) \geq\left(a_{6}+a_{7}\right) G(u, v, v)
\end{aligned}
$$

Implies that

$$
G(u, u, v)=0 \text {. So } u=v
$$

Hence T has a unique fixed point.
Theorem 3: Let (X, G) be a complete G-metric space and f, g be two self mappings on (X, G) satisfying the following conditions:

1. $f(X) \subseteq g(X)$
2. f or g is continuous

$$
\text { 3. } \begin{align*}
& G(f x, f y, f z) \geq \alpha \frac{G(f x, g y, g z)}{1+G(g x, f y, g z)} \tag{3.2}\\
& +\beta \frac{G(g x, f y, g z)}{1+G(f x, g y, g z)} \\
& +\gamma \frac{G(g x, g y, f z)}{1+G(f x, g y, g z) G(g x, f y, g z)} \tag{3.3}
\end{align*}
$$

For every $x, y, z \in X$ and $\alpha, \beta, \gamma \geq 0$ with $3 \beta+3 \gamma>1$. Then f and g have a unique common fixed point in X.

Provided f and g are weakly compatible maps.

Proof: Let x_{0} be an arbitrary point in X.By (3.3), one can choose a point $x_{1} \in X$ such that $f x_{0}=g x_{1}$. In general one can choose x_{n+1} such that $y_{n}=f x_{n}=g x_{n+1}, \quad n=0,1,2,3 \ldots \ldots .$. From (3.3), we have $G\left(f x_{n}, f x_{n+1}, f x_{n+1}\right) \geq \alpha \frac{G\left(f x_{n}, g x_{n+1}, g x_{n+1}\right)}{1+G\left(g x_{n}, f x_{n+1}, g x_{n+1}\right)}$
$+\beta \frac{G\left(g x_{n}, f x_{n+1}, g x_{n+1}\right)}{1+G\left(f x_{n}, g x_{n+1}, g x_{n+1}\right)}$
$+\gamma \frac{G\left(g x_{n}, g x_{n+1}, f x_{n+1}\right)}{1+G\left(f x_{n}, g x_{n+1}, g x_{n+1}\right) G\left(g x_{n}, f x_{n+1}, g x_{n+1}\right)}$
$\geq \alpha \frac{G\left(f x_{n}, f x_{n}, f x_{n}\right)}{1+G\left(f x_{n-1}, f x_{n+1}, f x_{n}\right)}+\beta \frac{G\left(f x_{n+1}, f x_{n+1}, f x_{n}\right)}{1+G\left(f x_{n}, f x_{n}, f x_{n}\right)}$
$+\gamma \frac{G\left(f x_{n-1}, f x_{n}, f x_{n+1}\right)}{1+G\left(f x_{n}, f x_{n}, f x_{n}\right) G\left(f x_{n-1}, f x_{n+1}, f x_{n}\right)}$
$\Rightarrow G\left(f x_{n}, f x_{n+1}, f x_{n+1}\right) \geq(\beta+\gamma) G\left(f x_{n-1}, f x_{n}, f x_{n+1}\right)$

By the rectangle inequality of G-metric space we have

$$
\begin{gathered}
G\left(f x_{n-1}, f x_{n}, f x_{n+1}\right) \leq G\left(f x_{n-1}, f x_{n}, f x_{n}\right)+G\left(f x_{n-1}, f x_{n}, f x_{n+1}\right) \\
=G\left(f x_{n-1}, f x_{n}, f x_{n}\right)+2 G\left(f x_{n}, f x_{n+1}, f x_{n+1}\right)
\end{gathered}
$$

[By using proposition (1.6)]
From (3.4)
$G\left(f x_{n}, f x_{n+1}, f x_{n+1}\right) \geq(\beta+\gamma) G\left(f x_{n-1}, f x_{n}, f x_{n}\right)$
$+(2 \beta+2 \gamma) G\left(f x_{n}, f x_{n}, f x_{n}\right)$
$\Rightarrow(1-2 \beta-2 \gamma) G\left(f x_{n}, f x_{n+1}, f x_{n+1}\right) \geq(\beta+\gamma) G\left(f x_{n-1}, f x_{n}, f x_{n}\right)$
$\Rightarrow G\left(f x_{n-1}, f x_{n}, f x_{n}\right) \leq\left[\frac{1-(2 \beta+2 \gamma)}{(\beta+\gamma)}\right] G\left(f x_{n}, f x_{n+1}, f x_{n+1}\right)$
$\Rightarrow G\left(f x_{n-1}, f x_{n}, f x_{n}\right) \leq k G\left(f x_{n}, f x_{n+1}, f x_{n+1}\right)$
Where $k=\frac{1-(2 \beta+2 \gamma)}{\beta+\gamma}<1 \quad$ as $\quad(3 \beta+3 \gamma>1)$
Continue in the same way we have

$$
G\left(f x_{n}, f x_{n+1}, f x_{n+1}\right) \leq k^{n} G\left(f x_{0}, f x_{1}, f x_{1}\right)
$$

Therefore, for all $n, m \in N, n<m$, we have by rectangle inequality that

$$
\begin{aligned}
G\left(y_{n}, y_{m}, y_{m}\right) & \leq G\left(y_{n}, y_{n+1}, y_{n+1}\right)+G\left(y_{n+1}, y_{n+2}, y_{n+2}\right) \\
& +\ldots \ldots \ldots . \ldots \ldots . \ldots \ldots+\left(y_{m-1}, y_{m}, y_{m}\right) \\
& \leq\left(k^{n}+k^{n+1}+k^{n+2}+\ldots+k^{m-1}\right) G\left(y_{0}, y_{1}, y_{1}\right) \\
& \leq\left(\frac{k^{n}}{1-k}\right) G\left(y_{0}, y_{1}, y_{1}\right)
\end{aligned}
$$

Letting $n, m \rightarrow \infty$, we have $\lim _{n \rightarrow \infty} G\left(y_{n}, y_{m}, y_{m}\right)=0$. Thus $\left\{y_{n}\right\}$ is a G-Cauchy sequence in X. Since (X, G) is complete G-metric space, therefore there exists a point $Z \in X$ such that $\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n+1}=z$.
Since the mappings f or g is continuous, therefore $\quad \lim _{n \rightarrow \infty} g f x_{n}=\lim _{n \rightarrow \infty} g g x_{n}=g z$.Further f and g are compatible, therefore $\lim _{n \rightarrow \infty} G\left(f g x_{n}, g f x_{n}, g f x_{n}\right)=0$. Implies $\lim _{n \rightarrow \infty} f g x_{n}=g Z \quad$, from (3.3) we have $G\left(f g x_{n}, f x_{n}, f x_{n}\right) \geq \alpha \frac{G\left(f g x_{n}, g x_{n}, g x_{n}\right)}{1+G\left(g x_{n}, f x_{n}, g x_{n}\right)}$ $+\beta \frac{G\left(g g x_{n}, f x_{n}, g x_{n}\right)}{1+G\left(f g x_{n}, g x_{n}, g x_{n}\right)}$ $+\gamma \frac{G\left(g g x_{n}, g x_{n}, f x_{n}\right)}{1+G\left(f g x_{n}, g x_{n}, g x_{n}\right) G\left(g g x_{n}, f x_{n}, g x_{n}\right)}$
$\Rightarrow G(g z, z, z) \geq \alpha \frac{G(g z, z, z)}{1+G(z, z, z)}+\beta \frac{G(g z, z, z)}{1+G(g z, z, z)}$
$+\gamma \frac{G(g z, z, z)}{1+G(g z, z, z) G(g z, z, z)}$
Proceeding limit as $n \rightarrow \infty$, we have $g z=z$.This implies Z is fixed point of g.Again from (3.3)

$$
\begin{aligned}
& G\left(f x_{n}, f z, f z\right) \geq \alpha \frac{G\left(f x_{n}, g z, g z\right)}{1+G\left(g x_{n}, f z, g z\right)}+\beta \frac{G\left(g x_{n}, f z, g z\right)}{1+G\left(f x_{n}, g z, g z\right)} \\
& +\gamma \frac{G\left(g x_{n}, g z, f z\right)}{1+G\left(f x_{n}, g z, g z\right) G\left(g x_{n}, f z, g z\right)} \\
& \geq \alpha \frac{G(z, z, z)}{1+G(z, f z, z)}+\beta \frac{G(z, f z, z)}{1+G(z, z, z)}+\gamma \frac{G(z, z, f z)}{1+G(z, z, z) G(z, f z, z)}
\end{aligned}
$$

$\Rightarrow G(z, f z, f z) \geq(\beta+\gamma) G(z, f z, z)$ Taking limit $n \rightarrow \infty$ we have $f z=z$.This implies Z is fixed point of f.

References:

1. Shang Zhi Wang, Bo Yu Li, Min Gao and Kiyoshi Iseki, "Some fixed point theorems on expansion mappings", Math. Japonica, 29, No. 4 (1984), 631-636.
2. Zead Mustafa, A new structure for generalized metric spaces - With applications to fixed point theory, PhD Thesis ,the University of Newcastle , Australia, 2005.
3. Zead Mustafa and Brailey Sims, "A New approach to Generalized metric spaces" , Journal of Nonlinear and Convex Analysis , 7 (2) , (2006) , 289-297.
4. Mustafa Z., Obiedat H. and Awawdeh F., Some Fixed point theorem for mapping on complete G-metric spaces, fixed point theory and applications, 2008, article ID 189870, doi: 10.1155/2008/189870.
5. Mustafa Z., Shatanawi W. and Bataineh M. , Fixed point theorem on uncomplete G-metric spaces, Journal of Mathematics and Statistics , 4 (2008), 196-201.
6. Mustafa Z., Shatanawi W. and Bataineh M., Existence of fixed point results in Gmetric spaces, Int.J.of Math. and Math.Sci. , vol.2009, Article ID 283028, doi: 10.1155/2009/283028.
7. Saadati R., Vaezpour P. and Rhoades B.E., Fixed point theorem in generalized partially ordered G-metric spaces, Math.Comput. Modeling 52 (2010) 797801.
8. Shatanawi W., Some fixed point theorems in ordered G-metric spaces and applications, Abst.Appl. Anal. 2011 (2011) Article ID 126205.
